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Abstract It has been just over 100 years since the birth of Alan Turing
and more than sixty-five years since he published in Mind his seminal paper,
Computing Machinery and Intelligence [78]. In the Mind paper, Turing asked
a number of questions, including whether computers could ever be said to have
the power of “thinking”1. Turing also set up a number of criteria - including
his imitation game - under which a human could judge whether a computer
could be said to be “intelligent”. Turing’s paper, as well as his important
mathematical and computational insights of the 1930s and 1940s led to his
popular acclaim as the “Father of Artificial Intelligence”. In the years since
his paper was published, however, no computational system has fully satisfied
Turing’s challenge.

In this paper we focus on a different question, ignored in, but inspired by
Turing’s work: How might the Artificial Intelligence practitioner implement
“intelligence” on a computational device? Over the past 60 years, although
the AI community has not produced a general-purpose computational intel-
ligence, it has constructed a large number of important artifacts, as well as
taken several philosophical stances able to shed light on the nature and im-
plementation of intelligence.
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1 “I propose to consider the question, Can computers think?” . . .
Alan Turing, Computing Machinery and Intelligence, Mind, 1950.
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This paper contends that the construction of any human artifact includes
an implicit epistemic stance. In AI this stance is found in commitments to par-
ticular knowledge representations and search strategies that lead to a product’s
successes as well as its limitations. Finally, we suggest that computational and
human intelligence are two different natural kinds, in the philosophical sense,
and elaborate on this point in the conclusion.

Keywords Artificial Intelligence · Computational Intelligence · Epistemic
Stance

1 Introduction: The Imitation Game

Turing proposed to answer the “Can computers think” question by introducing
a gedanken experiment called the imitation game [24, 78]. In the imitation
game a human, the “interrogator”, asks questions of two different entities, one
a human and the other a computer. The interrogator is isolated from the two
respondents so that he/she does not know whether the human or computer
is answering. Turing, in the language of the 1940s, comments that “the ideal
arrangement is to have a teleprinter communicating between the two rooms”,
ensuring the anonymity of the responses. The task of the interrogator is to
determine whether he/she is communicating with the computer or the human
at any time during the question answering session. If the interrogator is unable
to determine, on average, whether the human or the machine is responding to
questions, Turing contends that the computer has to be seen as “thinking”,
or, more directly, to possess intelligence.

The historical timing of Turing’s paper is very instructive. It appeared be-
fore computers were challenged to understand natural human languages, play
expert level chess, recognize visual scenes, or control robots in deep space.
Turing and others [77, 15, 64] had already formally specified what it meant to
compute, and had by that time hypothesized limits on what was computable.
This sufficient model for any computation is often called the Church/Turing
hypothesis [77]. However, the radio-tube-based-behemoths of Turing’s time
were used mainly to work out the trajectories of ordnance and to break com-
plex ciphers. It is important to realize then - given the very limited nature of
actual tasks addressed at that time by computers - that the most important
result of Turing’s imitation game was to challenge humans to consider whether
or not thinking and intelligence are uniquely human skills. The task of Turing’s
imitation game was an important attempt to separate the attributed skills of
“thinking” and “intelligence” from their human embodiment.

Of course, no informed critic would contend that electronic computers, at
least as presently configured, are universally intelligent - they simply do a large
number of specific but complex tasks - delivering medical recommendations,
guiding surgeries, playing chess or backgammon, learning relationships in large
quantities of data, and so on - as well as, and often much better than, their
human counterparts performing these same tasks. In these limited situations,
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computers have passed Turing’s test. Facetiously, with the power and scope of
current computation, it could also be said that humans have failed Turing’s
test for machine-based intelligence.

It is interesting to note, also, that many in the research community are
still trying to play/win this challenge of building a general purpose intelli-
gence that can pass the Turing test in any area where a human might chal-
lenge it. This can be seen as useful, of course, for it requires the computer and
program designer to address the more complete and complex notion of build-
ing a general-purpose intelligence. Perhaps the program closest to achieving
this goal is IBM’s Watson, the winner of the Jeopardy television challenge
of February 2011, see Wikipedia Watson Computer [25]. Commercially avail-
able programs addressing the quest for general intelligence include web chat
bots, such as Apple’s Siri. The Turing challenge remains an annual event, and
the interested reader may visit Wikipedia at Turing Test Loebner Prize, for
details.

In fact, the AI community often uses forms of the imitation game to test
whether their programs are ready for actual use. When the computer scientists
and medical faculty at Stanford were ready to deploy their MYCIN program
they tested it against a set of outside medical experts skilled in the diagnosis
of meningitis infections [7]. The results of this analysis were very interesting,
not just because, in the double-blind evaluation, the MYCIN program out
performed the human experts, but also because of the lack of a general con-
sensus - only about 70% agreement - on how the human experts themselves
would treat these patients. Besides evaluating many deployed expert systems,
a form of Turing’s test is often used for testing AI-based video games, chess
and backgammon programs, computers that understand human languages,
and various forms of web agents [75].

The failure, however, of computers to succeed at the task of creating a
general-purpose thinking machine begins to shed some understanding on the
“failures” of the imitation game itself. Specifically, the imitation game (and
Turing’s paper) offer little hint of a definition of intelligent activity nor do
they offer specifications for building intelligent artifacts. Some critics contend
that Turing chose to avoid trying to offer a specific definition of intelligence
[24]. Deeper issues remain that Turing did not address: What IS intelligence?
What IS grounding or how may a human’s or a computer’s statements be said
to have “meaning”? Finally, can humans understand their own intelligence in
a manner sufficient to formalize or replicate aspects of it on a computer?

Perhaps the greatest contribution of artificial intelligence (and, in general,
of computation) to the study of knowledge and human cognitive processing
is to cash-out Ryle’s “ghost in the machine” [68]. Artificially intelligent arti-
facts offer a direct challenge to mind/body dualism. Many (mostly rationalist)
philosophers, including Descartes, Leibnitz and Spinoza contend that a non-
material substance, e.g., Descartes’ res cogitans [20], is required (is necessary)
to support human intellection. Computation has demonstrated an alternative:
The mind/brain is a processor, composed of billions of sub-processors, and
the resulting product, whether thought, feeling, or action, is an artifact of this
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processing. It follows that the human mental world can be grounded in a phys-
ical embodiment, can generate an infinite range of emotions and actions with
a finite instruction set, and that the mind itself is a complex system composed
of many interacting components [55].

It remains the fact, however, that designing and building a program for a
computer is a human intellectual activity, and requires sufficient answers to
questions such as: How can I represent for the computer entities and processes
occurring in this natural world? How do I understand and represent complex
interacting processes? How can I measure success within the sub-constraints
of a complex task? How do I capture teleology or goal-directed behavior? All
these questions entail an implicit epistemic stance.

This paper considers these issues, especially the responses to the challenge
of building intelligent artifacts that the artificial intelligence community has
taken since Turing. In the next section we give a brief overview of several AI
programs built over the past sixty years to be “intelligent” problem solvers. We
see, often apart from the practical stance of the program’s original designers,
many of the earliest approaches to AI as having an a priori bias towards
the empiricist or rationalist or pragmatist traditions for understanding an
external world. In the third section we present a constructivist rapprochement
that addresses many of the epistemic assumptions of early AI work. Finally,
we offer some preliminary conjectures about how a Bayesian model might be
epistemologically plausible.

2 AI Programs as Adventures in Rationalism, Empiricism, and
Pragmatism

The study of epistemology considers how the human agent knows itself and its
world, and, in particular, whether this agent/world interaction can be consid-
ered as a topic for scientific study. The empiricist, rationalist, and pragmatist
traditions have offered their differing answers to this question and artificial
intelligence researchers have made these approaches concrete with their pro-
grams. We are not suggesting that individual AI program designers ARE ra-
tionalists, empiricists, or pragmatists, rather that their approaches to problem
solving can be understood from these various perspectives. It is only natural
that a discipline that as its focus engages in the design and building of artifacts
that are intended to capture intelligent activity would intersect with philos-
ophy and psychology, and in particular, with epistemology. We describe this
intersection of disciplines in due course, but first we look at these philosophical
traditions themselves.

Rationalism may be described as that philosophical position where, in the
acquisition and justification of knowledge, there is a bias toward utilization
of unaided reason over sense experience [1]. Clear and distinct ideas become
a reality in themselves, and the sine qua non of mathematics and science.
Perhaps the most influential rationalist philosophers after Plato were Leibnitz,
Spinoza, and Descartes, central figures in the development of modern concepts
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of the origins of thought and theories of mind. Descartes attempted to find a
basis for understanding himself and the world purely through introspection and
reflection. Descartes [20] systematically rejected the validity of the input of his
senses and even questioned whether his perception of the physical world was
“trustworthy”. Descartes was left with only the “reality” of thought: the reality
of his own physical existence could be reestablished only after making his
fundamental assumption: “Cogito ergo sum”. Establishing his own existence
as a thinking entity, Descartes inferred the existence of a God as an essential
creator and sustainer. Finally, the reality of the physical universe was the
necessary creation and its comprehension was enabled through a veridical trust
in this benign God.

Descartes’ powers of abstraction and emphasis of clear and distinct ideas
(the same powers that produced his mind/body dualism) offered excellent
support for his creation of mathematical systems including analytic geometry,
where mathematical relationships could provide the constraints for character-
izing the physical world. It was a natural next step for Newton to describe
Kepler’s laws of planetary motion in the language of elliptical relationships
of distances and masses. Descartes’ clear and distinct ideas themselves be-
came a sine qua non for understanding and describing “the real”. His physical
(res extensa) non-physical (res cogitans) dualism supports the body/soul or
mind/matter biases of much of our own modern life, literature, and religion
(How else might we interpret the spirit is willing but the flesh is weak).

The origins of many of the rationalists’ ideas, especially the primacy of ab-
straction, can be traced back at least to Plato [4]. The epistemology of Plato
supposed that as humans experience life through space and time we gradually
come to understand the pure forms of real life separated from material con-
straints. In his philosophy of reincarnation, the human soul is made to forget
its knowledge of truth and perfect forms when reborn into a new existence. As
life progresses, the human, through experience, gradually comes to “remem-
ber” the forms of the disembodied life: learning is remembering. In his cave
experience, in book seven of The Republic, Plato introduces his reader to these
pure forms, the perfect sphere, beauty, and truth.

Mind/body dualism is a very attractive exercise in abstraction, especially
for agents confined to a physical embodiment and limited by senses that can
mislead, confuse, and even fail. This same rationalist power of abstraction is
also at the core of computation. How else can sets of symbols or patterns
of a process represent “something else”, whether the trajectory of ordnance
or patterns of human speech? Rationalism’s embodiment entering the AI-age
can be found in the early twentieth century analytic philosophers, the symbol-
based AI practitioner Herb Simon [74], and especially in the works of the
linguist Noam Chomsky [14]. It provides a natural starting point for work in
AI as we see subsequently.

Empiricism may be described as that philosophical position that links all
knowledge to experience. It often takes the form of denying that there is any
a priori knowledge, or any knowledge necessary truths, or any innate knowl-
edge supporting general principles [1]. Aristotle was arguably one of the first
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proponents of the empiricist tradition, although his philosophy also contained
the ideas of “form” and the ability to “abstract” from a purely material ex-
istence. However, Aristotle rejected Plato’s doctrine of transcendent forms,
noting that the act of abstraction does not entail an independent existence for
the abstraction. For Aristotle the most important aspect of nature is change.
In his Physics, he defines his “philosophy of nature” as the “study of things
that change”. He distinguishes the matter from the form of things: a sculp-
ture might be “understood” as the material bronze taking on the form of a
specific human. Change occurs when the bronze takes on another form. This
matter/form distinction also supports the computer scientists’ notions of sym-
bolic computing and data generalization, where sets of symbols can represent
entities in a world and abstract relations and algorithms describe how these
entities can share common characteristics, as well as be systematically altered.
Abstracting form from a particular material existence supports computation,
the manipulation of abstractions, as well as theories for data structures and
languages as symbol-based representations.

In the world of the enlightenment, the empiricist tradition of Locke, the
early Berkeley, and Hume, distrusting the abstractions of the rational agent,
remind us that nothing comes into the mind or to understanding except by
passing through the sense organs of the agent. On this view the rationalist’s
perfect sphere, or absolute truth, simply do not exist. Locke suggests that the
human at birth is tabula rasa, a blank slate, where all language and human
“meaning” is captured as conditioning across time and experience. What the
human agent “internalizes” are the human-perceptible aspects of a physical
existence; what it “knows” are loose associations of these physical stimuli.
The extremes of this tradition, expressed through the Scots philosopher David
Hume, include a denial of causality and the ability to prove the existence of
an all-powerful God. There is an important distinction here, the foundation
of an agnostic/skeptic position: it is not that a God doesn’t/can’t exist, it is
rather that the human agent can’t know or prove that He/She does exist.

The empiricist tradition was especially strong in the first half of the twen-
tieth century leading into the AI movement, where its supporters included
A. J. Ayer and Rudolph Carnap, proponents of logical empiricism, who tried
to fuse empiricism with a logic-based rationalism, as well as the behaviorist
psychologist B. F. Skinner.

Pragmatism, as proposed by Peirce [60] and James [38], suggests that the
meaning of a doctrine is the same as the practical effects of adopting it and
contend that beliefs are true if they work satisfactorily in the widest sense of
the word [1]. Whereas empiricism and rationalism can be seen as self-based
characterizations of knowing, particularly as epistemology seems to be the
product of internalized thought experiments, pragmatism asks what an action
or stance will “effect” or “do” in a specific world environment. In short, prag-
matism asserts meaning, as well as an ethical valence, to a word or action as
it is externalized in an active world.

In Pragmatism [37], James asserts that “27” may mean one dollar too
few or equally a board one inch too long. He asserts, “What shall we call a
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thing anyhow? It seems quite arbitrary, for we carve out everything, just as we
carve out constellations, to suit our human purposes”. Further James claims
“We break the flux of sensible reality into things, then, at our will. We create
the subjects of our true as well as of our false propositions. We create our
predicates also. Many of the predicates of things express only the relations
of the things to us and to our feelings. Such predicates, of course are human
additions”.

Pragmatism, then, purports to ground all thoughts, words, and actions in
their expected consequences. An example of this epistemological stance, from
James, in the Varieties of Religious Experience [38] is that the truth, as well
as any imputed value, of a particular religious stance is what that stance does
for an individual’s life, for example, help deal with an addiction problem or
encourage the performance of charitable acts. This form of pragmatism allows
little critique, however, as one person’s religious values can directly contradict
those of others, for instance with various “inquisitions” or “fundamentalist
actions” all justified in the name of some religion. An important consequence
of the pragmatist philosophy was John Dewey [21], a colleague of James and
Peirce, who had an important impact on twentieth century education both in
the US and worldwide.

A computer program designer/builder makes specific assumptions about
his/her application domain, including: What will a program’s variables repre-
sent? How will data relationships be captured? What strategies will support
control algorithms? What is the relationship between the “perfect” and the
“good enough” solution? These questions must be addressed in the program
design and creation through the selection of specific software tools, for exam-
ple, the explicit separation of domain knowledge/logic from control algorithms,
as is common in building expert systems. These choices may be seen as a pro-
gram builder’s epistemic stance or inductive bias about an application domain.
Many modern artificial intelligence practitioners have implicitly adopted em-
piricist, rationalist, and/or pragmatist views of the world. We conclude this
section with several examples of each tradition.

From the rationalist perspective came the expert system technology where
knowledge was seen as a set of clear and distinct relationships (expressed in
if/then or condition/action rules) encoded within a production system archi-
tecture that could then be used to compute decisions in particular situations.
In fact, these systems are often seen as extremely brittle, for example when an
application situation does not exactly fit the logic specification, and too often,
the human user is expected to be the interpreter for the interpreter.

Figure 1 offers a simplified example of the production system approach,
where a rule set - the content of the production memory - is interpreted by
the production system. When the if component of the rule is matched by the
data in the working memory, the rule is said to “fire” and its conclusion then
changes the content of the working memory preparing it for the next iteration
of the system. The reader can observe that when the system is run in this
“data-driven” mode it is equivalent to a modus ponens interpreter of if/then
rule relationships.
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Fig. 1: A production system; in the traditional data-driven mode, a pattern in the Working
Memory matches the condition of a rule in the Production Memory. When this occurs, the
action of that rule takes place, producing new information for Working Memory and the
system continues to iterate towards a solution.

Interestingly enough, when the same production system is run in goal-
driven mode it can be seen as an abductive [60] interpreter. In this situation
the goals we wish to solve - the explanations we want to prove “best” - are
contained in the working memory and the production system takes these goals
and matches them to the conclusions, the action or then components of the
rules. When a conclusion is matched the rule again “fires” and the system
puts the if pattern of the rule into the working memory to serve as a subgoal
for the next iteration of the system, matching the conclusions of new rules. In
this abductive mode the system searches back through a sequence of subgoals
to see if it can make the case for the original goal/explanation to be true.
Abduction is an unsound form of reasoning, so the abductive interpreter can
be seen as generating possible explanations for the data. In many cases, some
probabilistic or certainty factor measure is included with each rule supporting
the interpreter’s likelihood of producing the “best” explanation.

In the work of Newell and Simon [57] and Simon [74] this production sys-
tem interpreter was taken a further step towards cognitive plausibility. On the
Newell and Simon view, the production memory of the production system was
a characterization of the human long-term memory and the if/then rules were
seen to encode specific components of human knowledge. On this approach,
human expertise for the practicing physician or the master chess player, for
example, was acknowledged to be about 50,000 such rules [57]. The working
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memory of the production system was seen as the human’s short-term memory,
or as describing a “focus of attention” for what the human agent was consider-
ing at any specific time (neuroscientists now localize this component of human
processing in Broadmann’s areas of pre-frontal cortex). Thus the production
system was proposed as a cognitive architecture that took the current focus
of the agent and used that to “fire” specific components of knowledge (rules)
residing in long-term memory, which, in turn, changed the agent’s focus of
attention. Furthermore, production system learning [67] was seen as a set of
procedures that could encode an agent’s repeated experiences in a domain into
new if/then rules in long-term (production) memory. The production system
is often seen as an embodiment of Newell and Simon’s physical symbol system
hypothesis [57] described in their 1976 Turing award lecture and discussed
further in the conclusion.

Early design of robot systems [26] can also be seen as a rationalist exercise
where the world is described as a set of explicit constraints that are orga-
nized as “states” with operators used to generate new states to accomplish
a particular task. “States” of the world are represented as a set of predicate
calculus descriptions and then these are checked by a set of “move” rules that
are used to generate new states of the world, much as the production system
did in the previous example. Figure 2a presents a start state and a goal state
for a configuration of blocks and a robot arm. These states are then changed
by applying “move” predicates, as can be seen in the state space of Figure
2b. Problems can happen, of course, when the actual world situation is not
represented precisely as the logic specifications would suggest, e.g., when one
block or the robot arm accidentally moves another.

Several later approaches to the design of control systems take a similar
approach. When NASA designed a planning system for controlling the com-
bustion systems for deep space vehicles, it expressed the constraints of the
propulsion system as sets of propositional calculus formulae. When the control
system for the space vehicle detected any anomaly it searched these constraints
to determine what to do next. This system, NASA’s Livingstone, proved very
successful for guiding the space flight in deep-space situations [81, 82].

There are many other examples of this rationalist bias in AI problem
solvers. For example, case-based reasoning uses a data base of collected and
clearly specified problem solving situations, much as a lawyer might look for
earlier legal precedents, cases that can be modified and reused to address new
and related problems [42].

A final example of the rationalist perspective is the suggestion that various
forms of logic in representation and inference, can be sufficient for capturing
intelligent behavior [47, 50, 43]. Many interesting and powerful representations
have come from this work including non-monotonic logics, truth-maintenance
systems, and assumptions of minimal models or circumscription [48, 49, 45].

From the empiricist view of AI there is the creation of semantic networks,
conceptual dependencies, and related association-based representations. These
structures, deliberately formed to capture the concept and knowledge associ-
ations of the human agent, were then applied to the tasks of understanding
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(a)
start = [handempty, ontable(b), ontable(c), on(a,b), clear(c), clear(a)]
goal = [handempty, ontable(a), ontable(b), on(c,b), clear(a), clear(c)]

(b)
move(pickup(X), [handempty, clear(X), on(X,Y)], [del(handempty), del(clear(X)),
del(on(X,Y)), add(clear(Y)), add(holding(X))])

Fig. 2: (a) The start and goal states of a blocks-world problem, and the set of predicate
descriptions for each state. (b) presents part of the state space search representing the
movement of the blocks to attain a goal state. The move procedure (stated as preconditions,
add, and delete constraints on predicates) is one of many possible predicates for changing
the current state of the world.
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Fig. 3: A semantic net “bird” hierarchy (left) that is created from the reaction time data
(right) of human subjects (Collins and Quillian 1969). This figure is adapted from [33].

human language and interpreting meaning in specific contexts. The original
semantic networks were, in fact, taken from the results of psychologists’ Collins
and Quillian, [17] reaction-time experiments. The goal was to design associa-
tive networks for computer-based problem solvers that captured the associa-
tive components of actual human memory. In their reaction time experiments
shown in Figure 3, Collins and Quillian [17] hypothesized that the longer the
human subject took to respond to a query, for example, “Does a bird have
skin?”, the further “apart” these concepts were assumed to be in the human
memory system. Closely associated concepts would support more immediate
responses.

A number of early AI programs sought to capture this associative repre-
sentation, first Quillian [65] himself, with the creation and use of semantic
networks. Wilks [80] basing his research on earlier work by Masterman [46]
who defined around 100 primitive concept types, also created semantic repre-
sentations for the computer-based understanding of human language. Schank
and Colby [71] with their conceptual dependency representation, created a set
of association-based primitives intended to support language-based meaning
to be used for computer understanding or translation. Finally, John Sowa [75]
created a conceptual graphs language whose structures could be reduced to
forms of first-order logic. This approach allows a transduction of the earlier
associative network schemes to a more rationalist-based representation (that
can also support alternative interpretations of semantic closeness).

From the empiricist perspective, neural networks and “deep” semantic net-
works were also designed to capture associations in collected sets of data and
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then, once trained, to interpret new related patterns in the world. For ex-
ample, the back-propagation algorithm in training phase takes a number of
related situations, perhaps surface patterns for an automated welder or phone
patterns of human speech, and conditions a network until it achieves a high
percentage of successful pattern recognition. Figure 4a presents a typical neu-
ron from a back-propagation system. The input values for each neuron are
multiplied by the (conditioned) weights for that value and then summed to
determine whether the threshold for that neuron is reached. If the thresh-
old is reached the neuron fires, usually generating an input signal for other
neurons. The back-propagation algorithm, Figure 4b, differentially “punishes”
those weights responsible for incorrect decisions. Over the time of training the
appropriately configured and conditioned network comes to “learn” the per-
ceptual cues that solve a task. And then the trained network can be used to
solve new related tasks.

Back-propagation networks are an example of supervised learning, where
appropriate rewards and/or punishments are used in the process of training a
network. Other network learning can be unsupervised where algorithms clas-
sify input data into “clusters” either represented by a prototype pattern or by
some “closeness” measure. New input patterns then enter into the basins of
attraction offered by the currently clustered patterns. In fact, many successful
families of networks have been created over the years. There have also been
many obvious - and scientifically useless - claims that neural connectivity (net-
works) ARE the way humans performed these tasks, and therefore appropriate
representations for use in computer-based pattern recognition.

In an interesting response to the earlier rationalist planners for robotics
described above, Brooks at the MIT AI laboratory created what he called
the “subsumption” architecture [5, 6]. The subsumption architecture was a
layered collection of finite state machines where each level of the solver was
constrained by layers below it. For example, a “wander” directive at one level
of the robot’s controller would be constrained by a lower level that prevented
the agent from “running into” other objects during wandering.

The subsumption architecture is the ultimate knowledge-free system in that
there are no memory traces (states) ever created that could reflect situations
that the robot had already learned through pattern association. Obviously such
a system, although sufficient to explore its local environment, would not be
able to find its way around a complex environment, for example, the roadways
and alleys of a large city such as New York or Mumbai. Brooks acknowledged
the fact of a memory free solver, in entitling his 1991 paper “Intelligence
Without Representation” [6].

Other examples of representations with an empiricist bias include artificial
life and genetic algorithms. These approaches, where information is usually
encoded as bit-strings and whose operators include mutation and crossover
[45], may be characterized as association and reward based solvers that are
intended to capture survival of the fittest. Their advocates often saw these ap-
proaches as plausible models incorporating evolutionary pressures to produce
emergent phenomena, including the intelligent behavior of an agent.
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(a)
net = x1w1 + x2w2 + (bias)w3

(b)

Fig. 4: (a) presents a single artificial neuron whose input values, multiplied by (trained)
weights, produce a value, net. Usually using some sigmoid function, f(net), produces an out-
put value that may, in turn, be an input for other neurons. (b) is a simple backpropagation
network where input values move forward through the nodes of the network. During train-
ing the networks weights are differentially “punished“ for incorrect responses to the input.
Figures are adapted from [45]

Interesting examples of the pragmatist epistemological stance are programs
meant to communicate with human agents. In the simplest sense, these pro-
grams do question answering, as for example, Apple’s Siri or IBM’s Watson.
In a more demanding environment, programs are able to have a dialogue or a
more complete conversation with a human user. Typical examples of this task
might be when a user gets on-line to change a password or, more interestingly,
to get financial, insurance, or hardware troubleshooting advice. In these sit-
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Fig. 5: A probabilistic finite state automaton for conversations in the “troubleshooting”
domain, from [10]. Each state transition contains a probability measure specifying its likely
use.

uations the responding program must have some notion of teleology, or the
implicit purpose of the conversation.

Chakrabarti [8, 9, 10] has created such a system where probabilistic fi-
nite state machines, Figure 5, monitor whether the human agent’s implied
goal is met by the computational dialogue system. Figure 5 depicts a fi-
nite state machine representing a troubleshooting conversation, where the
states are the components of the conversation {Start, Greeting, Elicitation,
Troubleshooting, Fixed, Dissatisfaction, Conclusion}, and the transitions
are speech acts and dialog acts {Expressive, Assertive, Declarative, Goal−
Fulfillment} [72, 73, 8, 10]. Meanwhile, at each step in the communication, a
data structure, called a goal-fulfillment-map, Figure 6, captures the knowledge
necessary to answer particular questions [8, 10].

This dialog management software demonstrates a method for combining
content semantics, in the form of goal-fulfillment maps, within the pragmatic
constraints of a conversation. A good conversation depends on both a goal-
directed underlying process and a grounding in a set of facts about a knowledge
domain. Chakrabarti’s [8, 10] approach combines content semantics in the form
of a rationalist-type knowledge engine with pragmatic semantics in the form
a conversation engine to generate artificial conversations.
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Fig. 6: A goal-fulfillment map that supports discussion of a financial transaction, from [10].

The knowledge engine employs specifically designed goal-fulfillment maps
that encode the background knowledge needed to drive the conversations. The
conversation engine uses probabilistic finite state machines that model the dif-
ferent types of conversations. Interestingly, Chakrabarti [8, 10] used a form of
the Turing test to validate the quality, using Grice’s maxims [32], of the dia-
logue management software. Transcripts of computer generated conversations
and human-to-human dialogues in the same domain were judged as roughly
(approximately 86%) equivalent, with the computational dialogue significantly
(p < .05) more focused on the task or goal of the conversation.

To this point in Section 2 we have focused, from an epistemic perspective,
on a number of artificial intelligence representational schemes and their related
search strategies. A number of critics of traditional AI, including Brooks [5],
Dreyfus [22, 23], Merleau-Ponty [52] and Clark [16] suggest that human skilled
behavior does not require use of such explicit mental representations and/or
focused search. Brooks’ robot (seen earlier in this section) finds its way in the
world by actively exploring that world. Similarly, Dreyfus [23], taking examples
from the acquisition of expertise in playing chess and driving, describes how,
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over time, skills become more fluid and spontaneous responses to game and
road situations, replacing explicit search algorithms applied to complex static
representations.

Merleau-Ponty [52] describes an “intentional arc” where a human does not
simply receive input passively from an external world and then processes it.
Rather, the active agent is set to respond to the requirements of things, as a
world affording, based on past experiences, certain actions. On this viewpoint,
the best representation of the world is suggested to be the world itself. Clark
[16] makes similar conjectures of an external world that offers “scaffolding” to
support intelligent action: The mind moves into the organisms’ environment.
Clark’s example is of a human using paper and pencil or a calculator to do
complex arithmetic: an external world supports and enables this intellectual
activity.

Stochastic models, and in particular dynamic Bayesian networks (DBN),
can offer architectures that address these epistemic concerns of Brooks, Drey-
fus et al. In particular, Bayes’ theorem supports the active interpretation of
environmental cues based of past experiences while the DBN supports acqui-
sition of new information over time. With the analysis of a helicopter’s rotor
system, research supported by the US Navy, we have the ability to interpret
dangerous situations while not supported by any explicit knowledge base of
the situation [13]. This is the story of the next section.

3 Modern AI: Probabilistic Models

Although the probabilistic approach to problem solving became popular in the
late 1980s and early 1990s, its roots go back to the Reverend Thomas Bayes
in the mid-eighteenth century [3]. Early work in probabilistic computer-based
problem solving included optical character recognition in the late 1950s and
other work at IBM, Bell Laboratories and Carnegie Mellon University. Re-
searchers at Stanford used Bayesian technology in the 1970s in the Prospector
program’s algorithms for discovering minerals. But it wasn’t until the 1990s
that probabilistic methods became generally accepted, mostly through the use
of statistical methods for language understanding, the research of Judea Pearl
[58, 59] and the successes of Bayesian Belief Networks, an important simplifi-
cation of the complexity issues required of traditional Bayesian technology.

As we present next, the Bayes formula expresses a relationship between
newly acquired data (the posterior) and what the problem-solving agent has
already seen or experienced (the prior). This algorithmic relationship between
the prior and posterior has much intuition supporting it, for example, the
ability to understand new language utterances is in a large part due to previous
experience, knowledge, and use of that language. Using the terminology of
modern philosophy, linguistics, and psychology, we call this learning activity
“constructivist”.

Constructivism may be described [79] “as the theoretical perspective, cen-
tral to the work of Jean Piaget [61, 62], that people actively build their per-
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ception of the world and interpret actions and events that surround them in
terms of what they already know.” It follows that a person’s present state of
knowledge has a major influence on how and what new information is acquired.
Unlike empiricism, constructivism is appropriate for producing generalizations
(the diameter of a glass is related to its volume) but is more often used to pro-
duce most likely responses, given data (glass A holds more water than glass
B).

Bayes’ theorem [3] offers a plausible model of this constructivist world-
view. It is also an important modeling tool for much of modern AI, including
AI programs for natural language understanding, robotics, and machine learn-
ing. Consider the general form of Bayes’ relationship used to determine the
probability of a particular hypothesis, hi, given a set of evidence E:

p(hi | E) =
p(E | hi) · p(hi)∑n

k=1(p(E | hk) · p(hk))

where,
p(hi | E) is the probability that a particular hypothesis, hi, is true, given
evidence E.
p(hi) is the probability that hi is true overall, i.e., how likely hi is to occur.
p(E |hi) is the probability of observing evidence E when hypothesis hi is true.
n is the number of possible hypotheses.

By Bayes’ formula, the probability of an hypothesis being true, given a set
of evidence, is equal the probability that the evidence is true given the hypoth-
esis times the probability that the hypothesis occurs. This number is divided
by, or normalized by, the probability of the evidence itself. The probability of
the evidence occurring is seen as the sum over all hypotheses presenting the
evidence times the probability of that hypothesis itself. This “normalization”
measure forces the probability p(hi | E) to be a fraction in the 0 to 1 range.
As we see shortly, because that denominator, the probability of the evidence,
remains the same for all hypotheses, it is often ignored.

As an example, the left side of Bayes’ equation gives the probability of
a hypothesis hi given evidence E. Suppose the evidence E for a person is:
headache, high temperature, and vomiting, and there are three hypotheses hi:
a cold, viral infection, or allergies, Bayes’ formula can then be used to deter-
mine which of these hypotheses is most likely, or the best explanation, given
evidence E. The right side of Bayes’ equation describes how prior knowledge
and experience relates to the interpretation of the hypotheses. The expression
p(E | hi) asks how often the evidence, a headache, etc, occurs when a partic-
ular hypothesis, say allergies, is known to be true. p(hi) asks how likely that
hypothesis itself is to occur.

There are limitations to using Bayes’ theorem as just presented as an epis-
temological characterization of the phenomenon of interpreting new (a poste-
riori) data in the context of (prior) collected knowledge and experience. Most
important is the fact that the epistemic subject is not a calculating machine.
We simply don’t have all the prior (numerical) values for all the hypotheses
and evidence that can fit a problem. In a complex situation such as medical
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diagnostics where there can be hundreds of hypothesized diseases and thou-
sands of symptoms, this calculation grows exponentially. We next address this
combinatorial issue with three simplifications/extensions of Bayes’ rule: naive
Bayes, greatest likelihood measures, and Pearl’s Bayesian belief networks, in-
cluding dynamic Bayesian networks.

The calculation of the right hand side of Bayes’ formula requires the re-
peated determination of values for p(E | hi). When the evidence E is a set of
parameters (usually represented as a vector), it is often assumed these param-
eters are independent, given the hypothesis. For example, if the hypothesis is a
viral infection vi, and the evidence set is headaches h, high temperature t, and
vomiting v, these three pieces of evidence are assumed to be independent given
a viral infection. In most realistic situations this independence assumption is
not justified. When this independence is ignored, the algorithm is called naive
Bayes. In this example naive Bayes calculates p(E|hi) as p(h|vi)·p(t|vi)·p(v|vi),
a radical improvement both in compute time as well as in the need for obtain-
ing more probability measures such as p(h | vi ∧ t) or p(h | vi ∧ t ∧ v).

A second simplifying approach to using Bayes’ rule is to acknowledge that
the denominator on the right hand side of the equation, p(E), is the same for
all hi. and thus does not need to be used (or even calculated). This means
that, absent the normalization effect of the denominator, the resulting will no
longer be a probability measure. Thus, if we wish to determine which of all the
hi has the most support given the evidence E, we look for the largest value of
p(E | hi) · p(hi). This is called determining the argmax of all the hypotheses,
given the evidence:

argmax(hi) is the largest for all hi of p(E | hi) · p(hi)

In a dynamic interpretation, as sets of evidence themselves change across
time, we will call this argmax of hypotheses given a set of evidence at a
particular time the greatest likelihood of that hypothesis at that time. We show
this relationship, an extension of the Bayesian maximum a posteriori (or MAP)
estimate, as a dynamic measure over time t:

gl(hi | Et) = argmax(h1)p(Et | hi) · p(hi)

This model is both intuitive and simple: the most likely interpretation of
new data, given evidence E at time t, is a function of which interpretation
is most likely to produce that evidence at time t and the probability of that
interpretation itself occurring. The Bayesian greatest likelihood approach can
be viewed as a more sophisticated (and mathematically plausible) alternative
to the Stanford certainty-factor algebra commonly used in goal-driven rule-
based expert systems [45]. This greatest likelihood relationship can also be
interpreted as an example of Piaget’s assimilation, discussed further in section
4, where newly encountered information fits (is interpreted by) the patterns
created from prior experiences.

Pearl [58, 59], proposed the Bayesian Belief Net (BBN) to addresses the
complexity of data and inference with full Bayesian reasoning. The BBN makes
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two assumptions: first, that reasoning is not circular, that is, that no compo-
nent of the model can either directly or indirectly influence itself (i.e., that
the graph of the model has no cycles), and second, that every variable is in-
dependent of all its non-descendents, given knowledge of its parent(s). This
graph-based description is intended to capture implicit causality [59]. This
assumption captured in the BBN representation the implicit causality of situ-
ations. In the example of Figure 7, the occurrence of a traffic accident causes
traffic to slowdown and the flashing lights of rescue vehicles.

In the BBN example of Figure 7, suppose you are driving in a familiar place
where you are aware of the likelihood of traffic slowdowns, construction, and
accidents. These likelihoods are reflected in probability tables similar to that
of Figure 7, where the top row says that the probability of both construction
(C) and bad traffic (T ) being true(t) is 0.3. Solving this problem under full
Bayesian assumptions would require a 32-row probability table where each
of the five variables can be true or false. But factoring by the assumptions
of Bayesian belief networks, where C and A, L and C, and A and B are
independent of each other, reduces this table to 20 rows, a component of
which is presented in Figure 7b.

Now suppose, without any further obvious reasons, you begin to slow down;
so bad traffic (T ) becomes true. This means that in the table of probabilities
bad traffic (T ) can no longer be false, so the sum of the probabilities for the
first and third lines of the table in Figure 5, the construction possibilities (t
or f) when there is bad traffic (T = t), must be 1.0. This means that with
the slowdown of traffic the probability of construction gets much higher (0.75).
Similarly the probability of an accident (A) also increases. (These probabilities
are not shown).

Now suppose you drive along further and you notice Orange Barrels (B)
along the road and blocking a lane of traffic (Weighted orange plastic barrels
are often used in the U.S. at road projects to control traffic flow). This means
that on another probability table (again, not shown here) B is true(t), and
in making the probabilities sum to 1.0, the probability of Construction (C)
gets much higher. As the probability of Construction gets higher, with the
absence of Flashing Lights, the probability of an Accident decreases. The most
likely explanation for what you are experiencing now is construction, and the
likelihood of an accident goes down, and is said to be explained away.

The driving example just described demonstrates what is called a dynamic
Bayesian network (DBN). As the perceived information changes over time, first
slowing down and then seeing orange traffic control barrels, the probabilities
in the table change to reflect each new (posterior) piece of information. Thus
at each time period where there is new information, the values reflecting the
probabilities of that time period will change. Each state of the table reflects
the best explanation for what is currently happening.

As a further example of dynamic Bayesian network (BN) problem solving,
Chakrabarti et al. [12, 11] analyze a continuous data stream from a set of
distributed sensors, which represents the running “health” of the transmission
of a Navy helicopter rotor system through a steady stream of sensor data. This
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(a)

(b)

Fig. 7: A Bayesian belief network (BBN) for the bad traffic example and a table giving
sample probability values for Construction, C, and Bad Traffic, T. The probabilities for the
five parameters of the BBN will be in one 20-row table.

data consists of temperature, vibration, pressure, and other measurements
reflecting the state of the various components of the transmission system. An
example of this data can be seen in the top portion of Figure 8, where the
continuous data stream is broken into discrete and partial time slices.

Chakrabarti et al. [12, 11] then use a Fourier transform to translate these
signals into the frequency domain, as shown on the left side of the second row
of Figure 8. These frequency readings were compared across time periods to
diagnose the running health of the rotor system. The model used to diagnose
rotor health is the auto-regressive hidden Markov model (AR-HMM) of Figure
9. The observable states of the system are made up of the sequences of the
segmented signals in the frequency domain while the hidden states are the
imputed health states of the helicopter rotor system itself, as seen in the lower
right of Figure 8.

The hidden Markov model (HMM) technology is an important stochastic
technique that can be seen as a variant of a dynamic BBN. In the HMM,
we attribute values to states of the network that are themselves not directly
observable. For example, the HMM technique is widely used in the computer
analysis of human speech, trying to determine the most likely word uttered,
given a stream of acoustic signals [39]. In the helicopter example, training this
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Fig. 8: Real-time data from the transmission system of a helicopters rotor. The top compo-
nent of the figure presents the original data stream (left) and an enlarged time slice (right).
The lower left figure is the result of the Fourier transform of the time slice data (trans-
formed) into the frequency domain. The lower right figure represents the hidden states of
the helicopter rotor system.

system on streams of normal transmission data allowed the system to make
the correct greatest likelihood measure of failure when these signals change to
indicate a possible breakdown. The US Navy supplied data to train the normal
running system as well as data sets for transmissions that contained faults.
Thus, the hidden state St of the AR-HMM reflects the greatest likelihood
hypothesis of the state of the rotor system, given the observed evidence Ot at
any time t.

To summarize, it is not surprising that the AI problem solving products of
the past sixty years have met with limited successes. To give them their due,
they have been useful in many of the application domains for which they were
intended, designed, and deployed. But as models of human cognition, able
to generalize to new related situations, even to generalize and interpret their
various results, they were not successful, and, in the context of this paper, could
not pass Turing’s test. The success of the AI practitioner as the designer and
builder of new and useful software languages and artifacts is beyond question;
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Fig. 9: The data of Figure 8 are processed using an auto-regressive hidden Markov model.
States Ot represent the observable values at time t. The St states represent the hidden
“health” states of the rotor system, safe, unsafe, faulty at time t.

the notion that this effort emulates the full set of cognitive skills of the human
agent is simply naive.

The problem is both epistemological and pragmatic. How does the human
agent work within and manipulate elements of a world that is external to,
or more simply, is not, that agent? And consequently, how can the human
agent address the overarching epistemological integration of the agent and its
ever-changing environment? And how does (or even can) the human agent
understand this integration?

4 Towards an Epistemic Stance

Creating any computer program, including the supposed “intelligent program”,
is the product of human design and computer language skills. Every program
built is a product or “artifact” of its human creator. In a programs creation
lies an implicit “ontology”, or what symbols and patterns of symbols might
“mean” when interpreted, as well as an “epistemology”, or an a priori commit-
ment to a particular “symbol system mapping to world objects” view of the
world. This also represents a specific commitment to a lebenswelt, or lifeworld,
of how symbols and systems of symbols, when interpreted, interact with each
other within their environment. If progress in AI is going to evolve, we best
acknowledge these differing ontological commitments to what is “real” and in
what sense running programs may be said to have “meaning”.

An important aspect of a running program is that it can be deconstructed,
taken apart, its system of symbols examined, and their relation to a possible
world be critiqued. Newell and Simon suggest so much in their Turing Award
lecture [57]: “Each new program that is built is an experiment. It poses a
question to nature, and its behavior offers clues to an answer. Neither machines
nor programs are black boxes; they are artifacts that have been designed, both
hardware and software, and we can open them up and look inside. We can
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relate their structure to their behavior and we can draw many lessons from
a single experiment.” Thus, we explore the ontological commitments of the
program designer, as well as his/her implicit epistemic stance.

We have found through experimentation that the purer forms of ratio-
nalism, although excellent for capturing computation with clear and distinct
components of human knowledge, often fail in areas of imprecision and uncer-
tainty. From an empiricist perspective, representing and learning associations
has proved a powerful tool, but not always sufficient for discovering appropriate
generalizations and capturing higher level relationships. While the pragmatists
correctly argue that all action, including language, is “about” intention and
goal satisfaction, they have offered few modeling tools or mechanisms for how
this might be achieved. Probabilistic reasoning is an implicit acknowledgement
that actions in the world are to be understood as a function of the current
knowledge and experience of the interpreting agent. We propose, as a natural
extension of our discussions, the continued exploration and use of a construc-
tivist epistemology as a foundation for building programs that are intended
to produce “intelligent” behavior. We also propose that program designers be
aware of the full range of tools available for problem solving, many of which
have been mentioned in this paper. Especially important are algorithms and
representations supporting an active goal-driven and model-refining approach
to solutions.

We view a constructivist and model-revising epistemology as a rapproche-
ment between the empiricist, rationalist, and pragmatist viewpoints. The con-
structivist hypothesizes that all understanding is the result of an interaction
between perceived energy patterns from the world and conditioned mental
categories imposed on the world by the intelligent agent [61, 62, 27]. Using
Piaget’s descriptions we assimilate external phenomena according to our cur-
rent understanding and accommodate our understanding to phenomena that
does not meet our prior expectations.

Constructivists use the term schemata to describe the a priori structure
used to mediate the experience of the external world. The term schemata is
taken from the British psychologist Bartlett [2] and its philosophical roots go
back to Kant [40]. On this viewpoint observation is not passive and neutral
but active and interpretative.

Perceived information, Kant’s a posteriori knowledge, never fits precisely
into our preconceived and a priori schemata. From this tension the schema-
based biases a subject uses to organize experience are either modified or re-
placed. The use of accommodation in the context of unsuccessful interactions
with the environment drives a process of cognitive equilibration. The con-
structivist epistemology is one of cognitive evolution and continuous model
refinement [28, 29, 69]. An important consequence of constructivism is that
the interpretation of any perception-based situation involves the imposition
of the observers (biased) concepts and categories on what is perceived. This
constitutes an inductive bias.

When Piaget proposed a constructivist approach to understanding the ex-
ternal world, he called it a genetic epistemology. When encountering new phe-
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nomena, the lack of a comfortable fit of current schemata to the world “as it
is” creates a cognitive tension. This tension drives a process of schema revi-
sion. Schema revision, Piaget’s accommodation, is the continued evolution of
the agent’s understanding towards equilibration.

Schema revision and continued movement toward equilibration is a genetic
predisposition of an agent for an accommodation to the structures of society
and the world. It combines both these forces and represents an embodied
predisposition for survival. Schema modification is both an a priori reflection
of our genetics as well as an a posteriori function of society and the world.
It reflects the embodiment of a survival-driven agent, of a being in space and
time.

There is a blending here of the empiricist and rationalist traditions, me-
diated by the pragmatist requirement of agent intention and survival. As em-
bodied, agents can comprehend nothing except that which first passes through
their senses. As accommodating, agents survive through learning the general
patterns of an external world. What is perceived is mediated by what is ex-
pected; what is expected is influenced by what is perceived: these two functions
can only be understood in terms of each other.

Further, we can ask why a constructivist epistemology might be useful in
addressing the problem of understanding intelligence itself? How can an agent
within an environment understand its own understanding of that situation? We
believe that constructivism also addresses this problem of epistemological ac-
cess. For more than a century there has been a struggle in both philosophy and
psychology between two factions: the positivist, who proposes to infer mental
phenomena from observable physical behavior, and a more phenomenological
approach which allows the use of first person reporting to enable access to cog-
nitive phenomena. This factionalism exists because both modes of access to
cognitive phenomena require some form of model construction and inference.

In comparison to physical objects like chairs and doors, which often, naively,
seem to be directly accessible, the mental states and dispositions of an agent
seem to be particularly difficult to characterize. We contend that this di-
chotomy between direct access to physical phenomena and indirect access to
mental phenomena is illusory. The constructivist analysis suggests that no
experience of the external (or internal) world is possible without the use of
some model or schema for organizing that experience. In scientific enquiry, as
well as in our normal human cognitive experiences, this implies that all access
to phenomena is through exploration, approximation, and continued model
refinement.

The dynamic Bayesian network described in Section 3, with implementa-
tion details described in Figures 8 and 9, offers an approximation of the con-
structivist epistemology. The conditioned (prior) variables and relationships
in the Bayesian network captures the relational knowledge of the complex sys-
tem as well as the conditioned aspects of their interactions. Monitoring these
systems across time, using an auto-regressive hidden Markov model, captures
the changing state of the entire system. Interpreting that state as it evolves
over time, based on the conditioning of the running system, supports a goal-
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focused interpretation of the state of the helicopter transmission: “everything
is going fine”, “hey, something might be stressing the system”, or “it is time
to get this thing onto the ground”.

Interestingly, a justification for the use of the hidden Markov modeling
technology is that the actual state of complex systems often cannot be de-
terministically known. We humans only have access to the perceptual cues
afforded to our senses by these complex running systems. (This is much like
understanding another person’s speech - we only have perceptual cues and do
not know what is going on within that person). Although the actual state of
such systems is “hidden” from the observer, an approximation of that state
can be “constructed” through the “assistance” of appropriate hidden Markov
model software. A similar constructivist approach for understanding and gen-
erating human language dialogs can be seen in Section 2, Figure 5 [8, 10].

There are (at least!) three further issues that need to be addressed in de-
veloping a mature epistemological stance. The first is context switching, the
second is an agent’s active exploration within and between particular proba-
bilistic systems, and the third is the nature of “meaning” or as it is sometimes
called, “symbol grounding”.

We humans, and this may not be equally necessary for machines, actively
participate in our world through what can be called anticipatory contexts. This
fact may result from the limited processing capability of our pre-frontal cortex
and Broadmann’s areas, or through the limited bandwidth of our cortical
communication mechanisms. But for whatever reason we focus directly on one
thing at a time, with alternative interpretative scenarios remaining in the near
subconscious. There needs to be further research, along the lines of Sakhanenko
et al. [69, 70] on model failure and context switching in data interpretation:
What are the limitations of a particular model? When are models no longer
suitable for active interpretation of new data, or Piaget’s accommodation?
What model might afford the next best interpretative context?

The second issue is that we humans, through goal driven activity, explore
our environment not just through our already conditioned models for reality,
but also by continuously exploring and refining current interpretive contexts.
We learn by trying things, by doing things and by mistakes. Gopnik et al.
[31, 30, 29] describe how children learn by actively exploring their environ-
ment. Other current psychologists and philosophers support and expand this
pragmatic and teleological account of human developmental activity [28, 44].
Klein et al. [41] describe how physicists actively explore alternatives in com-
ing to know the current state of their systems (in his examples, particle beam
accelerators). Newell and Simon [57] describe how computers, both hardware
and software, can be understood through the active study of their behav-
ior. Pearl [59] and others [66] have proposed algorithms for counterfactuals,
for actively exploring causality relationships within the contexts of Bayesian
networks. The insight here is that intelligent understanding of a constantly
changing environment must be active, purposive, and integrative.

Finally, where does “meaning” come from? One intriguing answer might
be that many physical systems, once excited, require (need, seek) stasis. This
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could also be seen as the satisfaction of the pragmatists’ intentionality. AI re-
search, as well as research in physics, [36], has proposed different algorithms for
the real-time integration of new (a posteriori) information into previously (a
priori) learned patterns of information [19]. Among these algorithms is loopy
belief propagation [59] that integrates new data into a system of plausible be-
liefs, by constantly iterating this system towards equilibrium, or equilibration
as Piaget might describe it. The system in stasis includes identification of the
most likely explanation (hypothesis) for the new data, given the original state
of the system.

To summarize, a system can be in a priori equilibrium with its continuing
states of learned knowledge. When presented with novel information charac-
terizing a new situation, this a posteriori data perturbs the equilibrium. The
loopy belief propagation algorithm then iterates by sending “messages” be-
tween near-neighbors’ prior and posterior components of the model, until it
finds convergence or equilibrium in the form of a particular greatest likelihood
hypothesis (meaning?) that explains that novel information.

We conclude with several general comments about human intelligence and
the AI research community’s implicit assumption of epistemic stances.

5 Conclusion

In concluding, we present three issues relating to the arguments of this paper.
First, we conjecture that, at our current level of knowledge, human intelligence
and machine intelligence are two different philosophical kinds. On this conjec-
ture, although it can be extremely useful to compare both systems’ properties
and products, the systems still remain different entities and species. In Tur-
ing’s sense of computational equivalence [18], it has not been shown how to
build each system from the other.

Nonetheless, the two systems can share properties: just as birds and air-
planes can both fly, so humans and computers can share properties including
perception, thinking, and learning. Furthermore, Turing’s test for intelligence
is agnostic both as to what a computer might be composed of, vacuum tubes,
flip-flops, silicon, or even tinker toys, as well as what language processes are
used to make it work. All Turing required for “thinking” was that the machine
responses be roughly equivalent to those of a human. As noted earlier, it was
an impressive insight on Turing’s part, that machines, at the primitive stages
of the 1940s, would be thought to have the power of thinking.

We humans do not have the freedom to select our own architecture and em-
bodiment for assimilating information about ourselves and our environment.
The particulars of our human dispositions and social context mediate our in-
teractions with the world. We possess auditory and visual systems sensitive
to a certain bandwidth; we view the world as erect bipeds, having arms, legs,
and hands; we are in a world of weather, seasons, sun, and darkness; we are
part of a society with evolving goals and purposes; we are individuals that are
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born, reproduce, and die. These are our critical support and offer a medium
for our understanding, learning, and problem solving.

A machine’s embodiment and constraints are quite different. For example,
George Miller’s [53] “7 plus and minus 2” memory limitation for short term
human processing will not constrain a computer; neither will Newell and Si-
mon’s observation [56] of human’s memory constrained game playing search
as “iterative deepening”. Nor, conversely, has it been shown that currently
understood neural network architectures can be equivalent to human cortical
processing. Current machines are quite effective at broad and exhaustive data
searches, such as is found in Watson [25], or a search engine’s web crawling.
And still, when it comes to addressing problems that are exponentially com-
plex such as the games of chess or gomoku, machines have to deal with many
of the same constraints we humans must: working through heuristics to find
good enough solutions.

Our second concluding comment, an extension of the first, is that since
the human and machine share important properties/skills, we can, with a
scientifically supported methodology, compare the processes that support these
skills. This endeavor began as early as Leibnitz and Hobbes (who conjectured
that reasoning was nothing more than reckoning [35]) in the 17th century, it
became more detailed in the 1940s with the research of McCulloch and Pitts
[51] and Hebb’s conjectures about human learning [34], and further showed
important results in the Information Processing Psychology of the 1950s. It
was Allen Newell and Herbert Simon in their 1976 Turing Award lecture [57]
that clarified this cognitive information-processing task with their physical
symbol system hypothesis.

The physical symbol system hypothesis proposed that “the necessary and
sufficient condition for a physical system to exhibit general intelligent action is
that it be a physical symbol system.... Sufficient means that intelligence can be
achieved by any appropriately organized physical symbol system.... Necessary
means that any agent that exhibits general intelligence must be a physical
symbol system”.

The necessary component of this hypothesis has long been disproved by
multiple psychological and computational experiments demonstrating that hu-
man intelligent action can be described and explained by non-representation-
based models and without the use of explicit symbol manipulation [25, 5,
22, 52]. The sufficient component of this hypothesis has lead to a wealth of
new experiments and explanations for cognitive tasks. In fact, the sufficient
component of Newell and Simon physical symbol system hypothesis has sup-
ported the discipline of cognitive science and much of the current research in
computational linguistics[53, 56, 76, 54, 63].

Finally, our third comment is that most artificial intelligence researchers
and software developers are agnostic about the previous two issues. They sim-
ply want to make computational artifacts that reflect what a human user
might, on observing their effects, call “intelligent”. But the primary point of
this paper is that in the process of designing and building computational pro-
cesses that are intended to produce such products, humans do make epistemic
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commitments. Whether these are a result of how we think about the world, or
whether they are designed towards the strengths of a particular computational
system, these programs are human creations and so take on an (often implicit)
epistemic stance.

As noted throughout the paper, this stance can support both strengths as
well as severe limitations in the final artifact created. It must also be noted
that most AI technology is not focused on novel or exciting goals such as
playing chess, being a Jeopardy champion, or controlling robots in deep space.
Rather, they are focused on and developed to support the quality of human
existence, whether this be as a health monitor or advisor, a recommender
system for travel routes, an expert system for giving medical or diagnostic
advice, or simply supporting better human understanding and communication
[10]. As support for human centric interaction, advice, and decision-making the
program builder’s underlying epistemic assumptions remain important.
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